Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353869

RESUMO

BACKGROUND: Pitaya is a fruit with high consumer acceptance and health benefits. Pitaya peel is a waste product with potential in the food industry, as an antioxidant enrichment and natural colouring. Therefore, there is an interest in recovering its constituents and searching for pitaya species with greater potential. This work aimed to obtain bioactive extracts from the dried peel of pitaya fruits of the species Selenicereus monacanthus (Lem.), S. costaricensis W. and S. undatus H. using supercritical fluids at different pressures (100, 250 and 400 bar) and ethanol-water 15% v/v or ethanol 100% as co-solvents. The extraction yield, antioxidant activity, colour and total betalain content were evaluated. RESULTS: The extract obtained from S. monacanthus showed the highest extraction yield (49.6 g kg-1 ), followed by S. costaricensis (27.5 g kg-1 ) and S. undatus (17.7 g kg-1 ) at 400 bar and 35 °C using ethanol 15%, v/v. The antioxidant capacity was strongly influenced by pressure, favouring the obtaining of betalain-rich extracts at higher pressures, especially in the species S. costaricensis (0.6 g kg-1 ) and S. monacanthus (0.3 g kg-1 ). To improve the extraction of S. undatus (the most cultivated species), the procedure of subsequential extractions was applied. This procedure considerably increased the extraction yield, antioxidant activity and total content of betalains. The use of ethanol 100% provided more bioactive fractions and achieved a good separation of betalains. CONCLUSION: The supercritical extraction method can overcome the challenge of efficiently extracting compounds from pitaya peel, due to the presence of bioactive compounds of great polarity. © 2024 Society of Chemical Industry.

2.
Antioxidants (Basel) ; 12(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37891942

RESUMO

Enhanced solvent extraction (ESE) and pressurized liquid extraction (PLE) have been used for the first time to obtain antioxidant compounds from Prestonia mollis leaves. The effects of pressure (100-250 bar), temperature (55-75 °C) and the composition of the extraction solvent (ethanol, water and hydroalcoholic mixtures) were evaluated according to multilevel factorial designs. PLE provided the largest extraction yields compared to ESE, as well as a greater impact of the operating conditions studied. The highest total phenolic content was obtained when using a hydroalcoholic mixture (CO2/ethanol/water 50/25/25) through ESE at 100 bar and 75 °C. The antioxidant capacity of this extract is related to higher concentration levels of the identified flavonoids: Quercetin 3-O-xylosyl-rutinoside, Kaempferol 3-(2G-apiosylrobinobioside) and Kaempferol 4'-glucoside 7-rhamnoside. This extract was tested for the supercritical impregnation of polylactic acid (PLA), which is a polymer widely used in the biomedical industry. The influence of pressure (100-400 bar), temperature (35-55 °C), amount of extract (3-6 mL) and impregnation time (1-2 h) have been evaluated. The best results were obtained by impregnating 3 mL of extract at 100 bar and 55 °C for 2 h, achieving 10% inhibition with DPPH methods. The extract presented a potentially suitable impregnation of PLA for biomedical applications.

3.
Antioxidants (Basel) ; 11(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35740066

RESUMO

The leaves of Olea europaea as agricultural waste represent a convenient source of antioxidants. In combination with supercritical CO2 (scCO2), assisted impregnation is an interesting strategy for the preparation of biomedical devices with specific bioactivity. For this purpose, 3D-printable filaments of thermoplastic polyurethane (TPU) and polylactic acid (PLA) were employed for the supercritical impregnation of ethanolic olive leaves extract (OLE) for biomedical application. The extraction of OLE was performed using pressurized liquids. The effect of pressure (100-400 bar), temperature (35-55 °C), and the polymer type on the OLE impregnation and the swelling degree were studied including a morphological analysis and the measurement of the final antioxidant activity. All the studied variables as well as their interactions showed significant effects on the OLE loading. Higher temperatures favored the OLE loading while the pressure presented opposite effects at values higher than 250 bar. Thus, the highest OLE loadings were achieved at 250 bar and 55 °C for both polymers. However, TPU showed c.a. 4 times higher OLE loading and antioxidant activity in comparison with PLA at the optimal conditions. To the best of our knowledge, this is the first report using TPU for the supercritical impregnation of a natural extract with bioactivity.

4.
Antioxidants (Basel) ; 11(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35453422

RESUMO

Some citrus by-products such as orange peel contains valuable compounds that could be recovered and restored into the food chain. In this study, an efficient valorization of orange peel has been investigated using green extraction, fractionation, and impregnation techniques. The first step included its extraction using CO2 and ethanol under different pressure (200-400 bar) and temperature (35-55 °C) conditions. The extracts obtained at 300 bar and 45 °C showed strong antioxidant with moderate antimicrobial activity. Then, the extract was subjected to a sequential fractionation process. The fraction obtained at 300 bar, 45 °C, and using 32% ethanol showed the strongest antioxidant and antimicrobial activity with a high extraction yield. Finally, the potential of the two best extracts (obtained at 400 bar and 45 °C before any fractionation and the fractions obtained at 300 bar, 45 °C using 32% ethanol) was determined by conducting an impregnation process to obtain an antioxidant food-grade rigid plastic that would preserve fresh food. The percentage of cosolvent (1 and 2% ethanol), the impregnation time (1 and 3 h), the pressure (200 and 400 bar), and the temperature (35 and 55 °C) were evaluated as variables of this process. The impregnated plastic showed good antioxidant and antimicrobial activities.

5.
Polymers (Basel) ; 13(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204192

RESUMO

Ketoprofen (KET) is an anti-inflammatory drug often used in medicine due to its analgesic and antipyretic effects. If it is administered in a controlled form by means of different dosing devices, it acts throughout the patient's recovery period improving its efficacy. This study intends to support the use of supercritical solvent impregnation (SSI) as an efficient technique to develop polylactic acid (PLA) functionalized with ketoprofen, for use as controlled drug release devices. For this purpose, firstly, the influence of different SSI variables on the desirable swelling of the polymer structure, while avoiding their foaming, were evaluated. Then, the resulting ketoprofen loading was evaluated under different pressure/temperature conditions. It was generally found that as pressure and temperature are higher, the drug impregnation loads also increase. The maximum impregnation loads (at about 9% KET/PLA) were obtained at 200 bar and 75 °C. In vitro drug release tests of the impregnated compound were also carried out, and it was found that drug release profiles were also dependent on the specific pressure and temperature conditions used for the impregnation of each polymer filament.

6.
J Sep Sci ; 31(8): 1352-62, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18383244

RESUMO

The extraction of carotenoids and chlorophylls using carbon dioxide modified with ethanol as a cosolvent is an alternative to solvent extraction because it provides a high-speed extraction process. In the study described here, carotenoid and chlorophyll extraction with supercritical CO(2 )+ ethanol was explored using freeze-dried powders of three microalgae (Nannochloropsis gaditana, Synechococcus sp. and Dunaliella salina) as the raw materials. The operation conditions were as follows: pressures of 200, 300, 400 and 500 bar, temperatures of 40, 50 and 60 degrees C. Analysis of the extracts was performed by measuring the absorbance and by using empirical correlations. The results demonstrate that it is necessary to work at a temperature of 50-60 degrees C and a pressure range of 300-500 bar, depending on the type of microalgae, in order to obtain the highest yield of pigments. The best carotenoid/chlorophyll ratios were obtained by using supercritical fluid extraction + cosolvent instead of using conventional extraction. The higher selectivity of the former process should facilitate the separation and purification of the two extracted pigments.


Assuntos
Dióxido de Carbono/análise , Carotenoides/análise , Clorofila/análise , Cromatografia com Fluido Supercrítico/métodos , Etanol/análise , Eucariotos/metabolismo , Biomassa , Dióxido de Carbono/química , Clorofila/química , Desenho de Equipamento , Metanol/química , Pigmentação , Pós , Pressão , Solventes/química , Synechococcus/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...